0-01 Solve Linear Equations and Inequalities

Golden Rule										
Do unto others as you wouldthem to do unto —Jesus										
Colden Dulo of Alashus										
Golden Rule of Algebra Do unto one side of the equation as you done unto the										
Do unto one side of the equation as youdone unto the										
General way to solve linear equations										
1. Get theall on one										
2. Get everythingfrom the										
Solve $3x + 6 = 0$	Solve $2(x + 1) = 5x$									
Solve $4(x+5) \ge 16$	Solve $-2x + 5 < 17 - x$									
Solve for $y: 2x + 5y = 12$	Solve for $h: 3rh + 5h = 7$									

A real estate agent's base salary is \$22,000 per year. The agent earns a 4% commission on total sales. How much must the agent sell to earn \$60,000 in one year?

0-02 Use Problem Solving Strategies and Models

Distance/Rate d = rt Temperature $F = \frac{9}{5}C + 32$ Area of a Triangle $A = \frac{1}{2}bh$ Area of a Rectangle $A = \frac{1}{2}bh$ Area of a Rectangle $A = \frac{1}{2}bh$ Area of a Circle $A = \pi r^2$ Circumference of a Circle $C = 2\pi r$ Ways to find a verbal model Image: Circumference of a Circle $C = 2\pi r$ Ways to find a verbal model Image: Circumference of a Circle $C = 2\pi r$ Ways to find a verbal model Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $C = 2\pi r$ Circumference of a Circle $C = 2\pi r$ Ways to find a verbal model Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $C = 2\pi r$ Image: Circumference of a Circle $Circumference of a Circle Circumference of a Circle Circumference of a Circle $		nulas						
Area of a Triangle $A = \frac{1}{2}bh$ Area of a Rectangle $A = \ell w$ • Easiest to start by writing an equation in This is called a Ways to find a verbal model • Use a • Look for a • Draw a • In arctic tern flies an average speed of 16.7 miles per hour. How long will it take to fly from its winter grounds in Antarctic its breeding grounds in Greenland, a distance of 12000 miles? • table shows the height <i>h</i> of a paramotorist after <i>t</i> minutes. Find the height of the paramotorist after 8 minutes. • Time (min), t 0 1 2 3 4 • Height (ft), h 2400 2190 1980 1770 1560	Distance/Rate	!					Perimeter of a Rectangle	
Interview $h = \frac{2}{2}$ bit Area of a Rectangle $h = \frac{2}{6}$ bit Circumference of a Circle $C = 2\pi r$ • Easiest to start by writing an equation in This is called a Ways to find a verbal model • Use a • Look for a • Draw a • Draw a • Draw a • breading grounds in Greenland, a distance of 12000 miles? • table shows the height h of a paramotorist after t minutes. Find the height of the paramotorist after 8 minutes. • Time (min), t 0 1 2 3 4 • Height (ft), h 2400 2190 1980 1770 1560	Temperature		F	$C = \frac{9}{5}C + \frac{1}{5}C$	32		_	-
Area of a ketualize A = tw • Easiest to start by writing an equation in This is called a Ways to find a verbal model • Use a • Look for a • Draw a In arctic tern flies an average speed of 16.7 miles per hour. How long will it take to fly from its winter grounds in Antarctic tes breeding grounds in Greenland, a distance of 12000 miles? The table shows the height h of a paramotorist after t minutes. Find the height of the paramotorist after 8 minutes. Time (min), t 0 1 2 3 4 Height (ft), h 2400 2190 1980 1770 1560	Area of a Tria	ngle	A	$=\frac{1}{2}bh$				
Ways to find a verbal model • Use a	Area of a Recta	angle	A	$=\ell w$			Circumference of a Circle	$C = 2\pi r$
 Use a	• Easiest t	o start by	v writing a	an equati	on in		This is called a	
 Look for a	Ways to find a	verbal n	nodel					
Drawa	• Use a							
In arctic tern flies an average speed of 16.7 miles per hour. How long will it take to fly from its winter grounds in Antarctic tes breeding grounds in Greenland, a distance of 12000 miles?The table shows the height h of a paramotorist after t minutes. Find the height of the paramotorist after 8 minutes.Time (min), t01234Height (ft), h24002190198017701560	Look for	a						
The table shows the height <i>h</i> of a paramotorist after <i>t</i> minutes. Find the height of the paramotorist after 8 minutes. Time (min), t 0 1 2 3 4 Height (ft), h 2400 2190 1980 1770 1560 F(t) = 100000000000000000000000000000000000	• Draw a _							
Height (ft), h 2400 2190 1980 1770 1560								
	`he table shows	the heigh	t h of a pa	aramotor	ist after <i>t</i>	t minutes. F	ind the height of the paramotorist	after 8 minutes.
bear walks 10 miles towards the west. Then it turns around and walks back east for 2 miles to try to catch a fish. After lu		_	-				ind the height of the paramotorist	after 8 minutes.
bear walks 10 miles towards the west. Then it turns around and walks back east for 2 miles to try to catch a fish. After lu	Time (min), t	0	1	2	3	4	ind the height of the paramotorist	after 8 minutes.
walks 5 more miles west until it finds a place to sleep. How far is the bear's sleeping location from its starting position?	Time (min), t	0	1	2	3	4	ind the height of the paramotorist	after 8 minutes.

0-03 Solve Absolute Value Equations and Inequalities

Absolute Values	
from origin to coordinate	
In one dimension, turns the number	
• $ x = b$	
• Distance between is <i>b</i>	
• $ x-k = b$	
• Distance between is <i>b</i>	
Steps to Solve Absolute Value Equations	
1. Write equations.	
a. One with the absolute value expression	
b. One with the absolute value expression	·
2each equation.	
3your solutions.	
Solve $ x - 3 = 10$	2x+5 = 3x
4x - 1 = 2x + 9	
$ \mathbf{T}_{\mathbf{A}} = \mathbf{I} - \mathbf{L}_{\mathbf{A}} + \mathbf{J}$	
Absolution Value Inequalities	
Solve absolute value inequalities the same as	
Exception: write answer as	
Solve $ 2x - 7 > 1$	$ 7 - x \le 4$

Algebra	2	0-03	
Algebla	4	0-05	

Name: _____

٠	In manufacturing,	is the amount of allowed	between the
	measurement and the	·	

 $|Actual - Standard| \leq Tolerance$

Ostrich eggs have an average mass of 1950 grams, with a tolerance of 350 grams. Write and solve an absolute value inequality that describes the mass of ostrich eggs.

0-04 Find Slope and Write Equations of Lines

Positive Slope: 2 Zero Slope: Negative Slope: No Slope (Undefined): There's No Slope to stand on. and the slope of the line passing through the given points. Classify as <i>rises, falls, horizontal</i> , or <i>vertical</i> . (7, 1), (7, -1) Parallel Lines In the same plane and do not(7, 1), (7, -1) Parallel Lines In the same plane and do not(7, 1), (7, -1) Parallel Lines In the same plane and do not(7, 1), (7, -1) Parallel Lines In the same plane and do not(7, 1), (7, -1) Parallel Lines In the same plane and do not(7, 1), (7, -1) Parallel Lines In the same plane and do not(7, 1), (7, -1) Parallel Lines In the same plane and do not(7, 1), (7, -1) Parallel Lines In the same plane and do not(7, 1), (7, -1) Parallel Lines Intersect to form aangle Slopes are the	Slope	
ope is the	<i>Slope</i> =	
ope is the	$m - \frac{y_2 - y_1}{z_1 - z_1}$	(x_2, y_2)
Types of Slope (x1, y1) rise • Positive Slope:		
Types of Slope run Positive Slope: Zero Slope: Negative Slope: No Slope (Undefined): There's No Slope to stand on. nd the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. nd the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. nd the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. nd the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. nd the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. nd the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. nd the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. nd the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. no slope slope are the	lope is the	(x_1, y_1) rise
• Positive Slope: • Zero Slope: • Negative Slope: • No Slope (Undefined): There's No Slope to stand on. and the slope of the line passing through the given points. Classify as rises, falls, horizontal, or vertical. (7, 1), (7, -1) Parallel Lines • In the same plane and do not(7, 1), (7, -1) Parallel Lines • In the same plane and do not(7, 1), (7, -1) Perpendicular Lines • Intersect to form aangle • Slopes are the • OR Product of slopes is • $\frac{2}{3}$ and $-\frac{3}{2}$ Ell whether the lines are <i>parallel, perpendicular</i> , or <i>neither</i> . ne 1: through (-2, 8) and (2, -4)	Types of Slope	
 Negative Slope:	Positive Slope:	K
 No Slope (Undefined):	Zero Slope:	
There's No Slope to stand on. Ind the slope of the line passing through the given points. Classify as <i>rises, falls, horizontal,</i> or <i>vertical.</i> (7, 1), (7, -1) Parallel Lines Parallel Lines In the same plane and do not	Negative Slope:	
nd the slope of the line passing through the given points. Classify as <i>rises</i> , <i>falls</i> , <i>horizontal</i> , or <i>vertical</i> . (7, 1), (7, -1) (7, 1), (7, -1) Parallel Lines In the same plane and do not		
Parallel Lines • In the same plane and do not	-	
Parallel Lines • In the same plane and do not		prizontal, or vertical.
 In the same plane and do not	7, 3), (-1, 7) (7, 1), (7, -1)	
 In the same plane and do not		
 In the same plane and do not		
 In the same plane and do not		
 In the same plane and do not		
 In the same plane and do not		
 In the same plane and do not		
 In the same plane and do not	Parallel Lines	
 Go thedirection Slopes are the Perpendicular Lines Intersect to form aangle Slopes are OR Product of slopes is OR Product of slopes is $\frac{2}{3}$ and $-\frac{3}{2}$ ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither</i> . ne 1: through (-2, 8) and (2, -4)	/	
 Slopes are the Perpendicular Lines Intersect to form aangle Slopes are OR Product of slopes is OR Product of slopes is \$\frac{2}{3}\$ and \$-\frac{3}{2}\$ ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither</i>. ne 1: through (-2, 8) and (2, -4) 		
Perpendicular Lines • Intersect to form aangle • Slopes are • OR Product of slopes is • $\frac{2}{3}$ and $-\frac{3}{2}$ ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither</i> . ne 1: through (-2, 8) and (2, -4)		
 Intersect to form aangle Slopes are OR Product of slopes is \$\frac{2}{3}\$ and \$-\frac{3}{2}\$ ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither.</i> ne 1: through (-2, 8) and (2, -4) 		
• Slopes are • OR Product of slopes is • $\frac{2}{3}$ and $-\frac{3}{2}$ ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither</i> . ne 1: through (-2, 8) and (2, -4)	Perpendicular Lines	
• OR Product of slopes is • $\frac{2}{3}$ and $-\frac{3}{2}$ ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither</i> . ne 1: through (-2, 8) and (2, -4)	Intersect to form aangle	
• $\frac{2}{3}$ and $-\frac{3}{2}$ ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither</i> . ne 1: through (-2, 8) and (2, -4)	Slopes are	
ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither</i> . ne 1: through (–2, 8) and (2, –4)		
ell whether the lines are <i>parallel, perpendicular,</i> or <i>neither</i> . ne 1: through (–2, 8) and (2, –4)	• $\frac{2}{3}$ and $-\frac{3}{2}$	
ne 1: through (-2, 8) and (2, -4)		
	sine 1: through $(-2, 8)$ and $(2, -4)$	
	ine 2: through (–5, 1) and (–2, 2)	

- Given _____ and _____
- 1. Use slope-intercept form _____
- Any other line
- 1. Find the _____(*m*)
- 2. Find a _____ the line goes through (x_1, y_1)
- 3. Use point-slope form _____

Write the equation of the line that passes through (-1, 6) and has a slope of 4.

Write the equation of the line that passes through (-1, 2) and (10, 0)

In a chemistry experiment, you record the temperature to be -5 °F one minute after you begin. Six minutes after you begin the temperature is 20 °F. Write a linear equation to model this.

0-05 Graph Equations of Lines

The simplest way to graph

Make a ____

- 1. Choose a reasonable range of _____usually including _____.
- 2. Substitute each *x* value into the ______to find the corresponding ______.
- 3. _____the points on a coordinate plane.
- 4. Draw the ______through the points.

Graph y	=	x^2	- 3

~						1
			-		 	
			1			

Slope-intercept form

y = mx + b

• *m* is _____; *b* is _____

To graph

- 1. Solve equation for _____
- 2. Plot the _____
- 3. From there move up and over the ______ to find another ______ of points
- 4. Draw a ______ neatly through the points

Graph y = -2x

y = x - 3

f(x) = 2 - x

• A, B, and C are _____

Ax + By = C

To graph

- 1. Find the _____ and ______by letting the other variable ______
 - x-intercept:
 - *y*-intercept:
- 2. Plot the _____ points
- 3. Draw a _____ through the two points

Horizontal Lines

Vertical Lines

$\overline{\text{Graph } 2x + 5y} = 10$								
				_1	•			
. 1				_				
<i>x</i> = 1	\vdash		_	_				_
	-							→
<i>y</i> = -4								
								_
				_				_
				<u> </u>	/			

0-06 Graph Absolute Value Functions and Transformations

 $f(x) = a|x - \mathbf{h}| + k$

To graph an absolute value graph,

1. Make a _____ of values,

OR

- 2. plot the _____(*h*, *k*)
- 3. follow the ______ of *a* on the ______ and -*a* on the ______.

Algebra 2 0-06

Graph and compare with y = |x|

=		- 2	+:	3			-				<i>y</i> =	$\frac{1}{4}$	x							
					-	1									-	•				
										<u> </u>										
\vdash	-	-					-	-	-			+	+				_			
																			 _	
←											E								→	
	_											-	-							
\vdash						\vdash			-	\vdash		+					_			
						┢									_	,				

Graph and compare with y = |x|y = -3|x + 1| - 2

Write an absolute value equation for the given graph.

0-07 Graph Linear Inequalities

• L	ike linear	, but with	instead of =	
		ed pair is a solution of 5		
), -4)			(-3, 8)	
<u> </u>		••		
Graphir	ng a linear inequal	lity		
1. G	raph the line as if i	t was		
2. D	otted or Solid line			
	• Dotted if			· · · · · · · · · · · · · · · · · · ·
	• Solid if			
3.				
5	 Test a noint 	on the line		κ 1 μ
	_	is a solution, shade	of the line	
	If the point	is not a solution, shade	of the line	
			of the line	
raph $x \ge$	-4		y > -3x	
< + + +	+ $+$ $+$ $+$ $+$ $+$		← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	┼┼┼┼≫
	+ $+$ $+$ $+$ $+$ $+$ $+$			
	+ $+$ $+$ $+$ $+$ $+$ $+$			
	+ $+$ $+$ $+$ $+$ $+$ $+$			
	+ $+$ $+$ $+$ $+$ $+$ $+$			+ + + + + + + + + + + + + + + + + + +
	+ $+$ $+$ $+$ $+$ $+$ $+$			
I				

Algebra 2 0-07		Name:
Graph $y \le 2x + 3$	y < 3 x - 1 - 3	
		+ + +
		+ + + - + - +
		++++
		+++>
		++++

You have two part-time summer jobs, one that pays \$9 an hour and another that pays \$12 an hour. You would like to earn at least \$240 a week. Write an inequality describing the possible amounts of time you can schedule at both jobs.

Graph the previous answer

<u> </u>															
-		-	-			-	_	 -		_	 -	-	-		
-		-	-	-	_	-	_	 -	 -		 -	-	-		_
		_		_				_							
-															
-		-	-			-	-	 -		-	 -	-	-	_	
-		-	-	-	-	_		 -	 -		 -	-	-		
<u> </u>		_	-	_											
-		-						-			-	-			
-		-	-					 -			-	-	-		

Identify three possible solutions of the inequality

0-08 Draw Scatter Plots and Best-Fitting Lines

Find the best-fitting line

- 1. Draw a _____ of the data
- 2. Sketch the _____that appears to follow the data the closest
 - There should be about as many points below the line as above
- 3. Choose ______points on the line and find the equation of the line
 - These do _____have to be original data points

Name:

Monarch Butterflies: The table shows the area in Mexico used by Monarch Butterflies to spend winter, *y*, in acres *x* years after 2006.

2006.																		
x	0	1	2	3	4	5	6			7								
у	16.5	11.4	12.5	4.7	9.9	7.1	2.9)		1.7								
Approxin	ate the best		\square							\square		\square	\square					
			_								+							
									_								╞	
Usevour	equation fro	m nart (a)	to predict t	the area us	ad by the h	uttorfligs i	n		_									
Use your equation from part (a) to predict the area used by the butterflies in 2016.															H		+	
							_											
Finding Linear Regression on a TI-84											NORM	1AL F	LOAT	AUTO	REA	IAN	1P	

- 1. Push STAT and select Edit....
- 2. Enter the *x*-values in List 1 (L1) and the *y*-values in List 2 (L2).
- 3. To see the graph of the points
 - a. Push Y= and clear any equations.
 - b. While still in Y=, go up and highlight Plot1 and press ENTER.
 - c. Press ZOOM and select ZoomStat.
- 4. Push STAT and move over to the CALC menu.
- 5. Select LinReg(ax+b) (Linear Regression).
- 6. Make sure the Xlist: is L1, the Ylist: is L1, the FreqList: is blank, and the Store RegEQ: is Y1.
 - a. Get Y1 by pressing VARS and select Y-VARS menu.
 - b. Select Function....
 - c. Select Y1.
- 7. Press Calculate
- 8. The calculator will display the equation. To see the graph of the points and line, press GRAPH.

Finding Linear Regression on a NumWorks graphing calculator

- 1. On the home screen select Regression.
- 2. In the Data tab, enter the points.
- 3. Move to the Graph tab.
- 4. The default is a linear regression and is displayed at the bottom of the screen. To change the regression type
 - a. Press OK.
 - b. Select Regression.
 - c. Select the desired regression type

0-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers. <u>0-01</u>

1. Solve 2x + 1 = 5x - 3

3. Solve for *y*: 3x + 5y = 8

8. Solve |7x - 1| < 15

2. Solve 2 < 2x + 1 < 5

<u>0-02</u>

- 4. On Sabbath, Franklin's family likes to walk in the woods. If Franklin walks at a rate of 3.5 mph, how far can he walk in 2 hours?
- 5. A honey bee is collecting pollen from flowers. The table shows how many flowers, *f*, it has visited in *t* minutes. If the pattern continues, how many flowers will the bee visit in 8 minutes?

<i>t</i> (min)	1	2	3	4
<i>f</i> (flowers)	6	12	18	24

<u>0-03</u>

6. Solve |2x + 1| = 7

7. Solve 2|x-6| = 10

<u>0-04</u>

- 9. Find the slope of the line through (-2, 1) and (-5, 5).
- 10. Write the equation of the line with slope = 5 and passes through (7, 1).
- 11. Write the equation of the line that passes through (0, 7) and (3, -2).

<u>0-05</u>

12. Graph $y = \frac{2}{3}x - 2$

<u>0-06</u>

15. Describe the transformation. $\frac{1}{2}f(x-2) + 4$

<u>0-07</u>

17. Graph *y* > *x*.

<u>0-08</u>

19. For each scatter plot, a) tell whether the data have a *positive correlation*, a *negative correlation*, or approximately *no correlation*, and b) tell whether the correlation coefficient is closest to -1,-0.5,0,0.5, or 1.

13. Graph y = -3x. 14. Graph 3x - 4y = -12.

16. Graph y = |x - 2| - 3.

18. Graph $y \le \frac{1}{2}|x+1| + 2$.

20. Draw a scatter plot using the data in the table, then write the equation of the best-fitting line.

X	0	0.5	1	1.5	2	2.5	3	3.5	4			
y	5	4.75	4.5	4.25	4	3.75	3.5	3.25	3			

